THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5220 Complex Analysis and its Applications 2016-2017
 Suggested Solution to Assignment 6

1 We denote the function in each parts by $f(z)$.
(a) Since $z^{2}-5 z+4=0$ if and only if $z=1$ or $z=4,1$ and 4 are two singular points of the function $f(z)$.
For $z=1$, note that for $0<|z-1|<1$,

$$
f(z)=\frac{z-1}{z^{2}-5 z+4}=\frac{z-1}{(z-1)(z-4)}=\frac{1}{z-4}
$$

Since $\frac{1}{z-4}$ is analytic for $0 \leq|z-1|<1$, the principal part of $f(z)$ at $z=1$ is 0 and $z=1$ is a removable singularity for $f(z)$. Furthermore, the residue at $z=1$ is given by 0 .

For $z=4$, note that for $0<|z-4|<1$,

$$
f(z)=\frac{1}{z-4}
$$

Therefore, the principal part of $f(z)$ at $z=4$ is given by $\frac{1}{z-4}$ and $z=4$ is a simple pole of $f(z)$. Futhermore, the residue at $z=4$ is given by 1.
(b) Note that 0 is a singular point of the function $f(z)$. For $0<|z|<1$, we have

$$
f(z)=\sin \left(\frac{2}{z}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\frac{2}{z}\right)^{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1}}{(2 n+1)!}\left(\frac{1}{z^{2 n+1}}\right)
$$

Therefore, the principal part of $f(z)$ at $z=0$ is given by $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1}}{(2 n+1)!}\left(\frac{1}{z^{2 n+1}}\right)$ and $z=0$ is an essential singularity of $f(z)$. Futhermore, the residue at $z=0$ is given by 2 .
(c) Since $\cos z=0$ if and only if $z=N \pi+\frac{\pi}{2}$ for some $N \in \mathbb{Z}, N \pi+\frac{\pi}{2}$ are singular points of the function $f(z)$ for any $N \in \mathbb{Z}$.
For $0<\left|z-\left(N \pi+\frac{\pi}{2}\right)\right|<1$,

$$
\begin{aligned}
f(z) & =\frac{z+1}{\cos z} \\
& =\frac{\left(z-\left(N \pi+\frac{\pi}{2}\right)\right)+\left(N \pi+\frac{\pi}{2}+1\right)}{\left.(-1)^{N+1} \sin \left(z-\left(N \pi+\frac{\pi}{2}\right)\right)\right)} \\
& =(-1)^{N+1} \frac{\left(z-\left(N \pi+\frac{\pi}{2}\right)\right)+\left(N \pi+\frac{\pi}{2}+1\right)}{\left.\left.\left.\left(z-\left(N \pi+\frac{\pi}{2}\right)\right)\right)-\frac{1}{3!}\left(z-\left(N \pi+\frac{\pi}{2}\right)\right)\right)^{3}+\frac{1}{5!}\left(z-\left(N \pi+\frac{\pi}{2}\right)\right)\right)^{5}+\ldots} \\
& =(-1)^{N+1}\left[\left(z-\left(N \pi+\frac{\pi}{2}\right)\right)+\left(N \pi+\frac{\pi}{2}+1\right)\right]\left(\frac{1}{\left(z-\left(N \pi+\frac{\pi}{2}\right)\right)}+\ldots\right) \\
& =(-1)^{N+1} \frac{\left(N \pi+\frac{\pi}{2}+1\right)}{z-\left(N \pi+\frac{\pi}{2}\right)}+\ldots
\end{aligned}
$$

As a result, for any $N \in \mathbb{Z}$, the principal part of $f(z)$ at $z=N \pi+\frac{\pi}{2}$ is given by

$$
(-1)^{N+1} \frac{\left(N \pi+\frac{\pi}{2}+1\right)}{z-\left(N \pi+\frac{\pi}{2}\right)}
$$

and the point is a simple pole. Furthermore, the residue at that point is given by

$$
(-1)^{N+1}\left(N \pi+\frac{\pi}{2}+1\right)
$$

(d) It is clear that $z=0$ is a singular point. Furthermore, for $0<|z|<1$,

$$
f(z)=\frac{\sin 3 z}{z}=\frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^{n}(3 z)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n+1} z^{2 n}}{(2 n+1)!}
$$

Therefore, the principal part of $f(z)$ at $z=0$ is given by 0 and $z=0$ is an removable singularity of $f(z)$. Futhermore, the residue at $z=0$ is given by 0 .
(e) Note that since we are using the principal branch for the square root, $z=4$ is the only singular point of $f(z)$. Furthermore, for $0<|z-4|<1$,

$$
f(z)=\frac{z^{2}}{2-\sqrt{z}}=\frac{-z^{2}(2+\sqrt{z})}{z-4}
$$

Let $\phi(z)=-z^{2}(2+\sqrt{z})$. Note that $\phi(z)$ is analytic for $0<|z-4|<1$. Moreover, we have

$$
\phi(z)=\phi(4)+\phi^{\prime}(4)(z-4)+\frac{\phi^{\prime \prime}(4)}{2}(z-4)^{2}+\ldots
$$

Therefore,

$$
f(z)=\frac{-z^{2}(2+\sqrt{z})}{z-4}=\frac{\phi(4)}{z-4}+\phi^{\prime}(4)+\frac{\phi^{\prime \prime}(4)}{2}(z-4)+\ldots
$$

From this we can see that the principal part of $f(z)$ at $z=4$ is given by $\frac{\phi(4)}{z-4}=\frac{-64}{z-4}$ and $z=4$ is a simple pole of $f(z)$. Futhermore, the residue at $z=4$ is given by -64 .

2 In each part, we denote the integrand by $f(z)$.
(a) For $f(z)=\frac{2 z-3}{z(z+1)}$, note that the singular points $z=0$ and $z=1$ lie inside the contour $|z|=3$. Moreover,

$$
\frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1}{z^{2}}\left(\frac{\frac{2}{z}-3}{\frac{1}{z}\left(\frac{1}{z}+1\right)}\right)=\frac{2-3 z}{z(z+1)}=\frac{(2-3 z) /(z+1)}{z}
$$

As a result,

$$
\int_{|z|=3} \frac{2 z-3}{z(z+1)} d z=2 \pi i \operatorname{Res}_{z=0} \frac{(2-3 z) /(z+1)}{z}=2 \pi i\left(\frac{2-3(0)}{0+1}\right)=4 \pi i
$$

(b) For $f(z)=\frac{z^{3}}{4+z^{2}}$, note that the singular points $z= \pm 2 i$ lie inside the contour $|z|=3$. Moreover, for $0<|z|<\frac{1}{2}$,

$$
\frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1}{z^{2}}\left(\frac{\frac{1}{z^{3}}}{4+\frac{1}{z^{2}}}\right)=\frac{1}{z^{3}\left(4 z^{2}+1\right)}=\frac{1}{z^{3}}\left(1-4 z^{2}+16 z^{4}+\ldots\right)=\frac{1}{z^{3}}-\frac{4}{z}+\ldots
$$

As a result,

$$
\int_{|z|=3} \frac{z^{3}}{4+z^{2}}=2 \pi i \operatorname{Res}_{z=0} \frac{1}{z^{3}\left(4 z^{2}+1\right)}=2 \pi i(-4)=-8 \pi i
$$

3 Since $q(z)$ is analytic and has a zero of order 1 at $z=z_{0}$, we have
$q(z)=q^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\frac{q^{\prime \prime}\left(z_{0}\right)}{2}\left(z-z_{0}\right)^{2}+\cdots=\left(z-z_{0}\right)\left(q^{\prime}\left(z_{0}\right)+\frac{q^{\prime \prime}\left(z_{0}\right)}{2}\left(z-z_{0}\right)+\ldots\right)=\left(z-z_{0}\right) g(z)$, where $g(z)=q^{\prime}\left(z_{0}\right)+\frac{q^{\prime \prime}\left(z_{0}\right)}{2}\left(z-z_{0}\right)+\ldots$ is an analytic function near z_{0} with $g\left(z_{0}\right)=q^{\prime}\left(z_{0}\right) \neq 0$. As a result, since

$$
f(z)=\frac{1}{[q(z)]^{2}}=\frac{1 /[g(z)]^{2}}{\left(z-z_{0}\right)^{2}}
$$

and the function $\phi(z)=\frac{1}{[g(z)]^{2}}$ is analytic near z_{0} with $\phi\left(z_{0}\right) \neq 0, z_{0}$ is a pole of order 2. Furthermore,

$$
\operatorname{Res}_{z=z_{0}} f(z)=\phi^{\prime}\left(z_{0}\right)=-2 \frac{g^{\prime}\left(z_{0}\right)}{\left[g\left(z_{0}\right)\right]^{3}}=-\frac{q^{\prime \prime}\left(z_{0}\right)}{\left[q^{\prime}\left(z_{0}\right)\right]^{3}}
$$

4 (a) Note that the singular points of the integrand $f(z)=\frac{1}{z^{2} \sin (z)}$ inside the contour are given by $z=0$ and $z=n \pi$ for $n= \pm 1, \pm 2, \ldots, \pm N$.

Note that for $0<|z|<1$,

$$
f(z)=\frac{1}{z^{2} \sin (z)}=\frac{1}{z^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2 k+1}}{(2 k+1)!}\right)}=\frac{1}{z^{3}-\frac{1}{6} z^{5}+\frac{1}{120} z^{7}+\ldots}=\frac{1}{z^{3}}+\frac{1}{6 z}+\ldots
$$

As a result, $\operatorname{Res}_{z=0} f(z)=\frac{1}{6}$.
For $0<|z-n \pi|<1, n= \pm 1, \pm 2, \ldots, \pm N$,

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2} \sin (z)} \\
& =\frac{1 / z^{2}}{(-1)^{n} \sin (z-n \pi)} \\
& =\frac{1 / z^{2}}{(-1)^{n}(z-n \pi)\left[1-\frac{1}{6}(z-n \pi)+\frac{1}{120}(z-n \pi)^{2}+\ldots\right]} \\
& =\frac{(-1)^{n} /\left[z^{2}\left(1-\frac{1}{6}(z-n \pi)+\frac{1}{120}(z-n \pi)^{2}+\ldots\right)\right]}{z-n \pi} \\
& =\frac{\phi(z)}{z-n \pi},
\end{aligned}
$$

where

$$
\phi(z)=\frac{(-1)^{n}}{z^{2}\left[1-\frac{1}{6}(z-n \pi)+\frac{1}{120}(z-n \pi)^{2}+\ldots\right]}
$$

is analyic near $z=n \pi$ with $\phi(n \pi)=\frac{(-1)^{n}}{n^{2} \pi^{2}}$.
As a result, $\operatorname{Res}_{z=0} f(z)=\frac{(-1)^{n}}{n^{2} \pi^{2}}$ for any $n= \pm 1, \pm 2, \ldots, \pm N$. Therefore,

$$
\int_{C_{N}} \frac{d z}{z^{2} \sin z}=2 \pi i \sum_{n=-N}^{N} \operatorname{Res}_{z=n \pi} \frac{1}{z^{2} \sin z}=2 \pi i\left(\frac{1}{6}+2 \sum_{n=1}^{N} \frac{(-1)^{n}}{n^{2} \pi^{2}}\right)
$$

(b) Recall the formula that for $z=x+i y$, we have

$$
|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y
$$

In particular, on the contour $x= \pm\left(N+\frac{1}{2}\right) \pi$,

$$
|\sin z|^{2} \geq \sin ^{2}\left(N+\frac{1}{2}\right) \pi=1
$$

On the other hand, on the contour $y= \pm\left(N+\frac{1}{2}\right) \pi$,

$$
|\sin z|^{2} \geq \sinh ^{2}\left(N+\frac{1}{2}\right) \pi \geq \sinh ^{2}\left(\frac{\pi}{2}\right) \geq 1
$$

Moreover, on the contour C_{N}, we have $|z| \geq\left(N+\frac{1}{2}\right) \pi$ Therefore,

$$
\left|\int_{C_{N}} \frac{d z}{z^{2} \sin z}\right| \leq\left[4\left(N+\frac{1}{2}\right) \pi\right] \frac{1}{\left(N+\frac{1}{2}\right)^{2} \pi^{2}(1)}=\frac{4}{\left(N+\frac{1}{2}\right) \pi} \xrightarrow{N \rightarrow \infty} 0
$$

By a), we have

$$
2 \pi i\left(\frac{1}{6}+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2} \pi^{2}}\right)=0
$$

which gives

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

